Edge-colouring and total-colouring chordless graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-colouring and total-colouring chordless graphs

A graph G is chordless if no cycle in G has a chord. In the present work we investigate the chromatic index and total chromatic number of chordless graphs. We describe a known decomposition result for chordless graphs and use it to establish that every chordless graph of maximum degree ∆ ≥ 3 has chromatic index ∆ and total chromatic number ∆+1. The proofs are algorithmic in the sense that we ac...

متن کامل

On Edge-colouring Indiierence Graphs on Edge-colouring Indiierence Graphs

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suu-cient condition for 0 (G) = (G)+1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for indi...

متن کامل

Edge colouring by total labellings

We introduce the concept of an edge-colouring total k-labelling. This is a labelling of the vertices and the edges of a graph G with labels 1, 2, . . . , k such that the weights of the edges define a proper edge colouring of G. Here the weight of an edge is the sum of its label and the labels of its two endvertices. We define χt(G) to be the smallest integer k for which G has an edge-colouring ...

متن کامل

Edge-colouring of join graphs

A join graph is the complete union of two arbitrary graphs. We give sufficient conditions for a join graph to be 1-factorizable. As a consequence of our results, the Hilton’s Overfull Subgraph Conjecture holds true for several subclasses of join graphs. © 2006 Elsevier B.V. All rights reserved.

متن کامل

On Edge-Colouring Indifference Graphs

Vizing's theorem states that the chromatic index 0 (G) of a graph G is either the maximum degree (G) or (G) + 1. A graph G is called overfull if jE(G)j > (G)bjV (G)j=2c. A suucient condition for 0 (G) = (G) + 1 is that G contains an overfull subgraph H with (H) = (G). Plantholt proved that this condition is necessary for graphs with a universal vertex. In this paper, we conjecture that, for ind...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2013

ISSN: 0012-365X

DOI: 10.1016/j.disc.2013.03.020